The Synthesis of a New Ring System, Germatrisilacyclobutane  $[\text{R}_2\text{Si}]_3\text{GeR'}_2 \text{ and Its Molecular Structure}$ 

Hideo SUZUKI, Yoko FUKUDA, Norikazu SATO, Hideki OHMORI,

Midori GOTO, \*† and Hamao WATANABE\*

Department of Chemistry, Faculty of Engineering, Gunma University,

Kiryu, Gunma 376

†National Chemical Laboratory for Industry, Tsukuba, Ibaraki 305

A new type of ring system, the first germatrisilacyclobutane  $[R_2Si]_3GeR'_2$   $(R=^iPr, ^tBuCH_2; R'=Me_3SiCH_2)$  was synthesized and characterized. The X-ray structure analysis revealed that the both  $Si_3Ge$  rings are nonplanar, and that the Si-Si and Si-Ge bond distances are considerably longer than those of the corresponding normal ones, respectively. The ring strain energy was estimated to be ca. 25 kcal/mol.

The chemistry of cyclopolysilanes containing a heteroatom such as oxygen, nitrogen, etc. is intriguing subject of a current interest because of their versatile physical and chemical properties. However, there are no reports on the four-membered ring system containing a germanium,  $\text{Si}_3\text{Ge}$ , although two studies on the syntheses of  $\text{Si}_4\text{Ge}^{1)}$  and  $\text{Si}_5\text{Ge}^{2)}$  systems have been described so far.

Recently, we reported some properties, including the photochemical behaviors, of cyclopolysilanes,  $[R^1R^2Si]_n$   $(n=3-7)^3)$  or  $[R_2Si]_nO$  (n=3,4). In connection with these compounds, we now wish to report the synthesis of germatrisilacyclobutane (1),  $[R_2Si]_3GeR'_2$ , and its molecular structure via X-ray analysis. Compounds 1a and 1b were obtained in good yields by the treatment of 1,3-dichlorohexaalkyltrisilanes and dialkyldichlorogermane with lithium in the presence (or absence) of biphenyl under mild conditions.

$$\text{Cl}(R_2\text{Si})_3\text{Cl} + \text{R'}_2\text{GeCl}_2 \xrightarrow{\text{Li}} [R_2\text{Si}]_3\text{GeR'}_2$$
 1a;  $\text{R=}^i\text{Pr}, \text{R'=Me}_3\text{SiCH}_2$   
1b;  $\text{R=}^t\text{BuCH}_2, \text{R'=Me}_3\text{SiCH}_2$ 

Typically, a solution of  ${\rm Cl(}^{i}{\rm Pr}_{2}{\rm Si)}_{3}{\rm Cl}$  (1.44 g, 3.49 mmol) in THF (14 cm  $^{3}$ ) was added to a suspension of Li powder (0.13 g, 18.6 mmol) in THF (17

cm $^3$ ) at 0 °C under argon. The mixture was stirred at 0 °C until it turned to yellow in color. A solution of  $(Me_3SiCH_2)_2GeCl_2^{\ 6}$  (1.33 g, 4.19 mmol) in THF (14 cm $^3$ ) was then added dropwise over 40 min to the mixture at 0 °C. After additional stirring for 3 h, the resulting mixture was worked up and recrystallized from EtOH to afford an analytically pure sample of 1a (0.88 g, 44% yield) as colorless crystals: mp 77.0-77.5 °C (sealed capillary). Physical and spectral data $^{7}$ ) for the sample were consistent with the proposed structure. Compound  $1b^8$ ) was also obtained by a similar treatment.

In order to obtain further confirmation, the structures of 1a (Fig. 1) and 1b were determined by X-ray diffraction<sup>9,10)</sup> which showed the  $Si_3Ge$  four-membered rings to assume folded structures with dihedral angles of  $24^\circ$  in 1a and  $37^\circ$  in 1b, respectively. Table 1 lists bond distances and angles

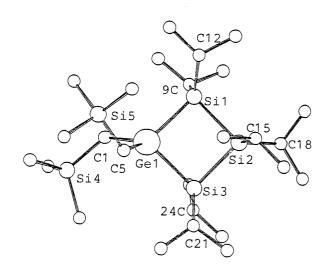



Fig. 1. Molecular structure of 1a Selected bond ditances ( $\mathring{A}$ ) and angles ( $\mathring{\circ}$ ): Ge(1)-Si(1) 2.452(1), Si(1)-Si(2) 2.380(1), Si(2)-Si(3) 2.391(1), Si(3)-Ge(1) 2.462(1); Ge(1)-Si(1)-Si(2) 89.0 (1), Si(1)-Si(2)-Si(3) 90.4(1), Si(2)-Si(3)-Ge(1) 88.5(1), Si(3)-Ge(1)-Si(1) 87.1(1), C(1)-Ge(1)-C(5) 107.5(1): dihedral angle ( $\mathring{\circ}$ ) between the two planes, Si(1)Ge(1)Si(3) and Si(1)Si (2)Si(3) 24.

of the two ring systems of the compounds, together with the related data of the corresponding tetrasilacycles,  $[^{1}Pr_{2}Si]_{4}$  (2a) and  $[(^{t}BuCH_{2})_{2}Si]_{4}$  (2b). The Si-Si and Si-Ge bond distances of 1a and 1b are considerably longer than the corresponding normal ones (2.34 for Si-Si and 2.39 Å for Si-Ge bonds), respectively. However, the C-Si ring bonds (av. 1.916 in 1a and 1.903 Å in 1b) are shorter than the normal one (1.94 Å), and C-Ge bonds (av. 1.989 Å in 1a and 1b) almost the same as that of the normal (1.99 Å). The folded structure and bond elongation probably be interpreted generally in terms of the result of the compromise between two main factors, the ring strain in this system and the steric repulsion arising from the congestion of the bulky substituents, as shown previously. Interestingly, the  $\angle$ SiGeSi in 1a and 1b are very close to the  $\angle$ SiSiSi in 2a and 2b, while the  $\angle$ SiSiSi in 1a and 1b are larger than those of 2a and 2b by ca. 2-3°, respectively. The difference between the Si-Ge and Si-Si bond distances in each pair (Table 1)

| Table 1. | Comparisons | of  | dihedral   | angles,   | bond   | distances,  | and | bond | angles |
|----------|-------------|-----|------------|-----------|--------|-------------|-----|------|--------|
|          | of <b>1</b> | and | d the rela | ated tet: | rasila | acycles (2) |     |      |        |

| Compound                                                | Dihedral | Bond distance/Aa) |       | Bond angle/°       |              |  |
|---------------------------------------------------------|----------|-------------------|-------|--------------------|--------------|--|
| Compound                                                | angle/°  | Si-Si             | Si-Ge | ∠SiSiSi            | ∠SiGeSi      |  |
| $[^{i}Pr_{2}Si]_{3}Ge(CH_{2}SiMe_{3})_{2} (1a)$         | 24       | 2.386             | 2.457 | 90.4               | 87.1         |  |
| $[(^{t}BuCH_{2})_{2}Si]_{3}Ge(CH_{2}SiMe_{3})_{2}$ (1b) | 37       | 2.393             | 2.444 | 88.7               | 86.4         |  |
| $[^{i}Pr_{2}Si]_{4}^{b}$ (2a)                           | 37       | 2.377             | _     | 87.0 <sup>a)</sup> | <del>-</del> |  |
| $[(^{t}_{BuCH_2})_2Si]_4^{C}]$ (2b)                     | 39       | 2.409             | _     | 86.7 <sup>a)</sup> | _            |  |

a) Average value. b) See Ref. 3a. c) See Ref. 11.

appears to account for this angle difference. Consequently, the results mentioned above apparently reflect the difference between the silicon and germanium atomic diameters in the two ring systems, in all respects, and the latter system therefore holds a slightly deformed-rhombic structure.

Previously, we estimated the ring strain energies of a series of homopolysilacycles,  $[R^1R^2Si]_n$  where n=2-6, by the comparisons of their lowest transition energies obtained from the longest-wavelength UV-absorption bands with the corresponding values for a series of linear permethylpolysilanes. Similarly, the ring strain energies of the present compounds also can be estimated by using their UV-absorption bands of 1a and 1b at  $\lambda_{\text{max}}$  300 and ca. 290 nm, respectively, since the factors controlling the spectral behaviors of the Si<sub>3</sub>Ge system could be essentially identical with the factors in the Si<sub>4</sub> ring system. Thus, the ring strain energies were estimated to be ca. 27 and 23 kcal/mol in 1a and 1b, respectively (av. 25 kcal/mol). The two values agree well with that of the Si<sub>4</sub> ring system (av. 23 kcal/mol), as well as that of cyclobutane (26.5 kcal/mol), but, it is worthy to note that 1a bearing less bulky substituents, Es( $^1$ Pr)=-0.47,  $^{13}$ ) than 1b, Es( $^1$ BuCH<sub>2</sub>)=-1.74,  $^{13}$ ) holds a greater strain energy by 4 kcal /mol.

## References

- 1) E. Hengge and U. Brychey, Mh. Chem., 97, 1309(1966).
- 2) E. Carberry and B. D. Dombek, J. Organomet. Chem., 22, C43(1970).
- 3) a) H. Watanabe, M. Kato, T. Okawa, Y. Kougo, Y. Nagai, and M. Goto, Appl. Organomet. Chem., 1, 157(1987); b) H. Watanabe, T. Muraoka, M. Kageyama, K. Yoshizumi, and Y. Nagai, Organometallics, 3, 141(1984); c) H. Watanabe,

- Y. Kougo, and Y. Nagai, J. Chem. Soc., Chem. Commun., 1984, 66.
- 4) H. Watanabe, E. Tabei, M. Goto, and Y. Nagai, J. Chem. Soc., Chem. Commun., 1987, 522.
- 5) H. Watanabe, N. Hirai, Y. Kougo, H. Matsuyama, M. Kobayashi, and Y. Nagai, 54th National Meeting of the Chemical Society of Japan, Tokyo, April 1987, Abstr. No. I, 1III J07; J08, p. 203-204; 8th Sympsium on Basic Organic Chemistry of the Chemical Society of Japan, Sendai, 1987, p. 353.
- 6) U. F. Miranov, T. K. Car, A. A. Buyakov, V. M. Slobodina, and T. P. Guntoadge, Zh. Obsh. Khim., <u>42</u>, 2010 (1972).
- 7) Anal. Found: C, 52.26; H, 10.67%. Calcd for  $C_{26_{3}6_{4}}^{H_{4}Si_{5}Ge}$ : C, 52.95; H, 10.94%. UV (cyclohexane)  $\lambda_{\text{max}}$  300 nm ( $\epsilon$  320 dm mol  $^{-1}$  cm  $^{-1}$ ).  $^{1}$ H NMR ( $C_{6}D_{6}$ )  $\delta$  0.26 (s, 18H, SiCH $_{3}$ ), 0.53 (s, 4H, GeCH $_{2}$ Si), 1.33 (m, 36H, SiCH( $\text{CH}_{3}$ ) $_{2}$ ), 1.59 (m, 6H, SiCHMe $_{2}$ );  $^{13}$ C NMR ( $C_{6}D_{6}$ )  $\delta$  0.70 (GeCH $_{2}$ Si), 2.37 (SiCH $_{3}$ ), 14.99 (Si $_{2}^{2}$ CHMe $_{2}$ ), 15.60 (Si $_{3}^{1}$ CHMe $_{2}$ ), 22.71 (SiCH( $_{2}^{2}$ H $_{3}^{2}$ );  $^{29}$ Si NMR ( $C_{6}D_{6}$ )  $\delta$  1.13 (Si $_{2}^{2}$ ), 2.23 (SiMe), 5.78 (Si $_{3}^{1}$ ). MW 590 by MS (Calcd 590).
- 8) Colorless crystals (23% yield) mp 368-374 °C (sealed capillary). Anal. Found: C, 60.04; H, 11.68%. Calcd for  $C_{38}H_{88}Si_{5}Ge$ : C, 60.20; H, 11.70%. UV (cyclohexane)  $\lambda_{max}$  286 nm ( $\epsilon$  590 dm mol  $^{-1}$  cm  $^{-1}$ ).  $^{1}$ H NMR ( $^{-1}$ Ch NMR ( $^{-1}$ Ch NMR ( $^{-1}$ Ch)  $^{-1}$ Ch NMR ( $^{-1}$ Ch)  $^{-1}$ Ch  $^{-1}$ Ch NMR ( $^{-1}$ Ch)  $^{-1}$ Ch  $^{-1}$ Ch
- 9) Crystal data for 1a:  $C_{26}H_{64}Si_{5}Ge$ , M=589.844, monoclinic,  $P_{21}/a$ , a=12.131 (2), b=19.102(2), c=16.132(2) A,  $\beta$ =99.39(1)°, U=3688(1)  $A^3$ , Z=4, Dc= 1.062 g cm<sup>-3</sup>,  $\mu$ (Cu K $\alpha$ )=28.3 cm<sup>-1</sup>. R=4.7, Rw=5.7%.
- 10) Crystal data for 1b:  $C_{38}H_{88}Si_{5}Ge$ , M=758.159, monoclinic,  $P_{21}/n$ , a=11.299 (4), b=19.019(1), c=23.850(4) A,  $\beta$ =98.31(1)°, U=5072(2) A, Z=4, Dc= 0.997 g cm<sup>-3</sup>,  $\mu$ (Cu K $\alpha$ )=13.3 cm<sup>-1</sup>. R=5.7, Rw=7.3%.
- 11) H. Matsumoto, M. Minemura, T. Takatsuna, Y. Nagai, and M. Goto, Chem. Lett., 1985, 1005.
- 12) H. Watanabe, H. Shimoyama, T. Muraoka, T. Okawa, M. Kato, and Y. Nagai, Chem. Lett., 1986, 1057 and the references cited therein.
- 13) "Steric Effects in Organic Chemistry," ed by M. S. Newman, John Wiley & Sons. Inc., New York (1956), p. 598.

(Received February 15, 1991)